Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization
نویسندگان
چکیده
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
منابع مشابه
Growth Process of Vertically Aligned Single-walled Carbon Nanotubes
The growth process of vertically aligned single-walled carbon nanotube (SWNT) films was investigated by means of in situ optical analysis and scanning electron microscopy. The measurements reveal that the growth of the SWNT film decreases after longer reaction times. This decrease is attributed to a combination of a diminishing growth rate and burning of the SWNTs due to oxygen in the growth ch...
متن کاملInfluence of a Top Crust of Entangled Nanotubes on the Structure of Vertically Aligned Forests of Single-Walled Carbon Nanotubes
The time evolution of the growth process of vertically aligned single-walled carbon nanotubes (or V-SWNTs) on a flat substrate was examined by scanning electron microscopy (SEM), resonant Raman spectroscopy, and angle-resolved X-ray absorption near-edge structure (XANES). This detailed characterization gives evidence for the growth of a thin layer (crust) of randomly oriented single-walled carb...
متن کاملCvd Growth and Heat Transfer of Carbon Nanotubes
Carbon nanotubes and graphene are extra-ordinal material with remarkable electrical, optical, mechanical and thermal properties. Films of vertically aligned (VA-) SWNTs and horizontally aligned (HA-) SWNTs are synthesized on quartz and crystal quartz substrates, respectively. These aligned film should inherit the remarkable properties of SWNTs. The recent progress in growth control and characte...
متن کاملControlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoAMo catalyst particles
A simple method to grow vertically aligned arrays of various forms of single-walled carbon nanotubes (V-SWNT) is reported. CO disproportionation on CoAMo bimetallic catalysts has been used in the synthesis. Resonant Raman and transmission electron microscope (TEM) were employed to characterize the as-produced SWNTs, which display a high purity and very low concentration of other carbon forms. C...
متن کاملDiameter and morphology control of SWNTs by alcohol CVD
The concentration of Co-Mo binary catalyst concentration and the effect on the morphology of single-walled carbon nanotubes (SWNT) was investigated by scanning electron microscopy and optical spectroscopy. We found that there is some critical concentration or catalyst density below which SWNTs will not be vertically aligned. Higher Mo concentrations resulted in vertically aligned, small-diamete...
متن کامل